
Dynamic Traffic Light
Optimization and Control System

using Model-Predictive Control Method

You-Ren Chen

A Thesis Submitted to the
Institute of Computer Science and Information Engineering of

National Chung Cheng University for the
Degree of Master in

Computer Science and Information Engineering

June 2015



摘要

ᒿ๱߈ԃٰؓᐒًޑኧໆ೴ᅌቚуǴຫٰຫӭޑҬ೯᝼ᚒډڙख़ຎǴځύҬ

೯Ꮮ༞ࢂ΋ঁख़要ୢޑᚒǶฅԶ౜ϞޑҬ೯س಍εӭ٬Ҕۓڰਔޑڋआᆘᐩ೛

ᙖҗ୏ᄊፓ᏾ݤਔǴ۳۳คݩރǵँว٣ҹ฻্ؠǵϺฅࡺǴ྽य़ᖏҬ೯٣ۓ

आᆘᐩޑБԄזೲᔈᡂ٠ỜှҬ೯Ƕՠќ΋Бय़Ǵᒿ๱ࣽޑמ຾؁ǴךॺΨё

ճҔགෳᏔǵ࣬ᐒ฻೛ഢᇆ໣ډຫٰຫӭޑҬ೯ኧᏵǴፏӵًࢬໆǵೲࡋǵ฻

ਔ໔Ƕࡑ

ᙖҗа΢ঁٿ੝ᗺǴךॺගрΑ΋঺୷ܭኳࠠႣෳ௓ޑڋҬ೯ဦᇞᓬϯБݤ

(MPC-based Traffic Light Control SystemǴᙁᆀ MTLCS)Ƕ೭ঁБݤх֖ঁٿ

Ь要ኳࠠǴϩձࢬًࣁໆႣෳኳࠠϷဦᇞᓬϯኳࠠǴךॺ׆ఈ೸ၸᐕўҬ೯ၗ

ૻႣෳ҂ًٰࢬໆǴᙖҗ MPC ݩރǴૈଞჹ҂ٰҬ೯ࡕ฼ౣᓬϯဦᇞਔ໔ޑ

೛࿼ӝ፾ޑဦᇞਔ໔Ǵ٠Ъૈӧอਔ໔ϣຎҬ೯ᡂϯ୏ᄊፓ᏾ဦᇞਔ໔Ǵِೲ

ӢᔈջਔޑҬ೯ݩރǴаၲׯډ๓Ҭ೯Ꮮ༞ޑҞ኱Ƕ

ჴᡍ่݀ᡉҢǴךॺࢬًޑໆႣෳኳࠠѳ๊֡ჹԭϩКᇤৡ (MAPE) ёե

ܭ 12%Ǵᆶۓڰਔڋဦᇞس಍࣬КǴךॺޑҬ೯ဦᇞᓬϯБݤफ़եΑ 29.70% ޑ

ѳ֡฻ࡑ౗ǴаϷ 26.93% ਔ໔Ƕࡑѳ֡฻ޑ

關鍵字： ඵችҬ೯ǵኳࠠႣෳ௓ڋǵҬ೯ဦᇞǵफ़եᏞ༞ǵًࢬໆႣෳ



Abstract

In recent years, with the increase in number of vehicles, more and more traffic

issues are becoming the focus of attention world wide. One important problem is

traffic congestion. However, most traffic systems still use fixed-time setting for a

very long cycle. These systems cannot dynamically adjust traffic light timing in

response to unexpected situations such as traffic accidents, natural calamities, or

sudden incidents. On the other hand, with advances in technology, traffic data

such as traffic volume, speed, and waiting time can now be gathered by sensors or

cameras.

Due to the above two observation, a novel MPC-based Traffic Light Control

System (MTLCS) is proposed. This method contains two main models, including

traffic flow prediction model and traffic light optimization model. Historical traffic

data is used to predict future traffic volumes. An MPC-based traffic light opti-

mization method is proposed to obtain appropriate time settings that can reduce

overall congestion. Our method also has the ability to dynamically adjust traf-

fic light timings. It can rapidly respond to real-time traffic conditions to reduce

traffic congestion.

Experiments show that the Mean Absolute Percentage Error (MAPE) of our

traffic flow prediction model is less than 12%. Using the proposed MPC-based

optimization method, the average waiting rate is reduced by 29.70% and the aver-

age waiting time is reduced by 26.93%, when compared with the fixed-time traffic

light control system.

Keywords: Smart Traffic, Model Predictive Control, Traffic Light, Congestion

Reduction, Traffic Flow Prediction
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Chapter 1

Introduction

In recent years, with the advances in technology and urbanization in a lot of

countries, more and more people have their own cars or motorcycles. Figure 1.1

shows the total registered vehicle statistics in Taiwan [2]. The public transporta-

tion systems are also rapidly growing. Traffic issues have become very important

problem nowadays.

The traffic issues involve many domains. Following are some basic and com-

mon topics. In the road infrastructure part, such as road type, communication

between primary roads and secondary roads, and structural design of intersections.

In the traffic situation part, camera monitoring, sensor applications, traffic light

control systems and travel routing plans are some popular topics. On the side

of public transport, there are some problems such as suitable transport type in

each area, transport scheduling, route design, and so on. Other famous topics like

green transport, pedestrian issues, parking problems, etc. There are many related

researches and systems trying hard to solve these issues and improve the traffic

situation.

In this Thesis, we focus on the purpose of reducing traffic congestion and

letting the traffic become more smooth. So we develop a dynamic adjustment

1
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Figure 1.1: Total number of registered vehicles in Taiwan, 1998-2014.

system using Model Predictive Control (MPC) [3]. There are two main parts in our

method. We adopt the Back-Propagation Neural Network (BPNN) [4] to design the

prediction model and the Genetic Algorithm (GA) [5] to design the optimization

method. The prediction model is trained using the historical data of traffic flow

information. The trained prediction model is then used to predict the flow in

different traffic situations like peak or off-peak. For the optimization method,

the prediction results, previous period traffic time settings and the neighbour

intersections time settings are considered in a GA fitness function for calculating

the new time setting for the next period. In addition to the above, we also develop

a traffic simulator to help us implement our method and verify if the optimization

result works or not.

2



1.1 Background

In this section, we describe some issues of intelligent transportation and traffic

congestion solving method.

1.1.1 Architecture of Intelligent Transportation System

Intelligent Transportation System (ITS) [1] [6] is now the hottest topic in ad-

dressing traffic issues. There exist some serious traffic problems, such as traffic

congestion, traffic accidents, air pollution, and energy consumption. To solve

these problems, the United States Department of Transportation (DoT) and ITS-

America formulate the structure of ITS. Figure 1.2 shows some main systems and

service in ITS, including ATMS, ATIS, APTS, CVOS, EPS, EMS, and AVCSS.

With the related service of ITS, we can promote traffic safety, reduce environmen-

tal impact, improve transport efficiency, and so on.

Among the above ITS subsystems, the Advanced Traffic Management System

(ATMS) [7] is more associated with the traffic congestion problem. The traffic light

control system is one of the research items in ATMS. Using traffic sensors on a

road, we can collect different traffic statistics and data, such as traffic speed, traffic

flow rate, and occurrence of traffic accidents. By integrating and analyzing these

traffic information, we can have more accurate traffic management and decision.

1.1.2 Countermeasures for Traffic Congestion

Following are some strategies to improve traffic congestion.

• Public transport

It is a shared passenger transport service that can significantly reduce num-

ber of private vehicles. Public transport include bus, train, Mass Rapid

3
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Figure 1.2: Intelligent Transportation System (ITS) architecture [1].

Transit (MRT), High-speed rail (HSR), tram, ferry, etc.

• Route planning

By doing route planning before travel in advance. We can use the related

traffic data to calculate the expected travel time, and also avoid the road

section which has accident. Then we can choose one of the best feasible

routes and might avoid congestion. It can also be collocated with the Global

Positioning System (GPS) to dynamically adjust travel path during the jour-

ney.

• Traffic light control

Adjusting traffic light period is one method to reduce the number of cars

waiting in queue. Nowadays, most traffic signal control systems use different

period settings between peak and off-peak times.

• Traffic prediction

4



Traffic prediction techniques use historical traffic data obtained from sensors

or cameras. The predicted future traffic states are then provided to the route

planning or traffic light setting system.

• Pricing strategies

Through charging fees from road users at certain times, it can limit the

volume of vehicles accessing roads. For example, it is now practiced in

Singapore, London, and some other cities. Another system is called “Cap

and trade”, which only allows licensed cars that have paid money on the

road. Charging higher parking fees in congestion sections is also a good

strategy to reduce user’s desire to cross or go into easily-congested popular

section.

• Road infrastructure

The government or related organization can broaden or build new roads to

increase the number of roads, or redesign roads to reduce junctions, such as

elevated or underground roads. It can also build highways without traffic

light to improve traffic situation.

1.1.3 Traffic Light Control System

In our work, we focus on the traffic light control system. There are many

researches or systems developing the related technique about this.

Some state-of-the-art traffic control software, including TRANSYT-7F, PASSER-

II, SOAP, SIGOP-III, UTCS, COMDYCS, and TRUSTS [8]. In the part of control

logic, Miller’s Algorithm, OPAC, ARTC, SCOOT, SCATS, MOVA, SAST, and

TOL are some common methods [8] [9]. Table 1.1 shows the full name of these

methods. There are also some simulation models, such as CORSIM, VISSIM,

5



Table 1.1: Example of traffic light control logic.
Abbreviation Full name

OPAC Optimization Policies for Adaptive Control

ARTC Areawide RealTime Traffic Control

SCOOT Split, Cycle, Offset Optimization Technique

SCATS Sydney Coordinated Adaptive Traffic System

MOVA Microprocessor Optimized Vehicle Actuation

SAST Stepwise Adjustment of Signal Timing

TOL Traffic Optimization Logic

PARAMICS and SIMTRAFFIC [10].

1.1.4 Example

Before presenting our work, we perform a simple experiment to observe some

phenomena. Table 1.2 gives some statistical data obtained from our own traffic

simulator [11]. Assume that currently the traffic flow we set to the simulator along

the horizontal direction is at its peak, and that along the vertical direction is at

off-peak. In fixed time setting system, we use the same number of seconds as the

traffic light setting time in each traffic light period. Then calculating the waiting

rate and waiting time per 20 cycles. We can see that the Intersection Average

Waiting Rate (IAWR) and Intersection Average Waiting Time (IAWT) defined in

Chapter 3 are similar in the four iteration of data calculation. If we do not change

the traffic time setting, the IAWR and IAWT will all remain quite high. Thus, we

need to dynamically adjust the traffic light time settings according to the traffic

flow, and thus improve the traffic congestion. This table also shows the improving

results in our method.

In another example, Figure 1.3 shows the vehicles amount per hour on Zhong-

6



Table 1.2: Average waiting data using fixed time traffic light setting.
Fixed Time System Our method

Cycle IAWR IAWT IAWR IAWT

0-20 60.34 % 9.53 61.66% 9.83

21-40 59.89 % 9.94 50.08% 7.92

41-60 58.10 % 9.46 48.48% 6.87

61-80 59.06 % 9.50 48.16% 6.71
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Figure 1.3: Traffic flow in Zhongshan Rd, Kaohsiung City, 7am-10pm, 2005/09/23.

shan road in the Kaohsiung city on September 23, 2005 [12]. We can see that the

traffic flow may have significant fluctuation in short time. Especially in the city,

because of the peak and off-peak state, the traffic flow is generally unstable. The

congestion situation often happen in these areas, too. Thus, we can also try to

implement a traffic flow prediction model to help us predict the traffic flow in the

future and set the traffic light with suitable timings.
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Figure 1.4: Proposed traffic light control and optimized framework.

1.2 Motivation

The control of traffic signal timing is an important issue in the design of traffic

control systems, because an inappropriate timing could lead to heavy congestion in

the traffic flow. Currently, most traffic control systems still use preset time periods

to control traffic lights. A traffic light is generally divided into green, yellow and

red signals. The time length of a traffic light is normally set depending on the

type or location of roads and on the peak or off-peak times. But these systems

mostly have time settings fixed for a very long cycle. Often, the same setting time

is applied for several hours. Thus, it cannot be adjusted dynamically to address

the issue of varying degrees of traffic congestion. However, in the real world, there

could be some unexpected situations such as traffic accidents, natural calamities,

or sudden incidents. In such cases, if the traffic light control system cannot adjust

dynamically and adaptively, traffic congestions will occur.

1.3 Goal

In this Thesis, we want to propose a traffic light optimization system using

MPC. There are two main things we want to accomplish. One is predicting the

traffic flow in the future, and the other one is optimizing the traffic timing. Fig-

ure 1.4 shows the proposed traffic light control and optimization framework. The

final goal we want to attain is to reduce traffic congestion.

8



1.4 Thesis Organization

The rest of the Thesis is organized follow. Chapter 2 introduces the related

works of traffic systems, including the prediction model, optimization model and

MPC system. Chapter 3 gives some definitions and parameter settings used in

our method, and also gives some assumptions for our work. Chapter 4 presents

the overall framework and the proposed algorithms for our traffic light control

systems. Chapter 5 provides the experiment results in our work, and also the

analysis results compared with other researches. Chapter 6 concludes the Thesis

and gives some future work.

9



Chapter 2

Related Work

In this chapter, we review some previous approaches about the issues of MPC

applying on traffic, traffic prediction models, traffic light optimization methods,

traffic simulators, and control systems.

2.1 Researches on MPC

Different from other traditional control methods, MPC depends on dynamic

models of the process. The main function of MPC is that it can optimize the

target in the current time slot and also take future time slot in account. It can

just adjust or implement the setting at the current time slot but also optimize a

finite time horizon in the future. In other words, MPC can anticipate future events

and take corresponding control actions. Figure 2.1 shows a conceptual picture of

MPC and Figure 2.2 shows the typical structure of MPC.

A lot of researches about applying MPC to traffic have been proposed. Kim

et al. [13] implemented a collision free ground transportation system and an au-

tonomous intersection management framework. In the MPC system, the vehicles

can automatically determine its own motion locally by communicating with neigh-

10
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Figure 2.1: Scheme of Model Predictive Control (MPC).

bor vehicles, the road speed limit, acceleration, and deceleration values, etc. Then

improving the safety of traffic. Khodayari et al. [14] proposed a car following con-

trol system based on MPC. They employed the relative distance and acceleration

of vehicles to construct a linear and continuous model. Then using MPC model

to control the behavior of car following and ensure road safety. Frejo et al. [15]

proposed a MPC approach applying on freeway traffic control system. They con-

sidered the elements, such as density, speed, ramp flow, and queue to design the

related equations. Using GA to estimate the control results and then implement

ramp metering control management.

Some researches also focused on the purpose which relating to our works. Zeg-

eye et al. [16] proposed a MPC-based approach that can reduce travel time and

vehicular emissions. They also presented a linear parameter varying (LPV) formu-
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Figure 2.2: Flow diagram of Model Predictive Control (MPC).

lation as traffic flow model to approximate the emission model and traffic flow. In

the paper of Tettamanti et al. [17], a MPC-based control system was established

to relieve traffic congestion. By estimating with the state feedback of real traffic

environment and limiting the traffic light time, it can improve homogeneous traffic

flow and reduce travel time. In the paper of Zhou et al. [18], they brought up the

shortcoming of traffic light control system based on centralised MPC. Because it

is impractical and unsuitable to control the complex traffic signal network in a

wide area. They proposed a decentralised coordinate MPC method to handle these

problems. In this algorithm, by dividing the whole network into some subsystems,

they can calculate data separately. But also having ability to communicate the de-

cisions with neighbourhood subsystems. They also showed that the new algorithm

will converge to a global optimum solution after enough iterations. Table 2.1 lists

the above MPC-based applications.

12



Table 2.1: Some applications using MPC model in traffic domain.
Year Literature Application Simulation model or platform

2008 [17] signal control system VISSIM
2010 [16] reducing vehicular emissions MEATNET, VT-macro
2012 [14] car-following behavior not mentioned

2012 [18]
decentralised coordinate

signal control system
VISSIM

2013 [15]
freeway ramp metering

control management
not mentioned

2014 [13]
collision free autonomous

ground transportation system
self made simulator

2.2 Researches on Prediction Models

Prediction model is one of the most significant issues in traffic, especially in the

traffic systems nowadays. More and more instruments, such as cameras, sensors,

loop detectors or other detection tools are widely applied in the ITS. The traffic

information and data which gathered from these equipment provide an important

application used in related topics. Among these, traffic prediction model has been

extensively researched.

Figure 2.3 shows the basic traffic prediction model diagram. Using the histori-

cal traffic data as the inputs of prediction model, we can forecast the speed, vehicle

volume, and traffic wave in the future. With these results, we can solve some prob-

lems in traffic issues, such as scheduling, routing, traffic light controlling, etc. In

order to deal with these road traffic big data, Chung et al. [19] proposed a basic

framework of traffic big data analysis processing. They used distributed Complex

Event Processing (CEP) to process massive real-time data and Enterprise Service

Bus (ESB) to integrate with other related services. They also used Hadoop and

HBase as tools to analyze and store real-time collision data.
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Figure 2.3: Flow diagram of traffic prediction model.
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In the topics of traffic prediction model, there are a lot of researches have been

proposed many algorithms or methods. Lin et al. [20] introduced a model based

on urban traffic network (UTN). The method focuses on the mechanism of traffic

flow movement and establishes a network topology to link the entire urban traffic.

Then Kong et al. [21] added a speed-density model which based on fundamental

diagram (FD) into UTN to decrease the vehicle delay time and improve traffic

congestion.

Some existed algorithms in common domain are also applied into traffic predic-

tion models. Zhu et al. [22] developed a model based on Kalman filtering theory

to forecast traffic volume. Guo et al. [23] gave a traffic predictor using k-Nearest

Neighbour (kNN) with Singular Spectrum Analysis (SSA) and having a great im-

provement in the incident case. When the traffic status is suddenly changed by

traffic incident, this model can provide a quick response. Wang et al. [24] used the

data mining technique to analyze the large amount of historical traffic flow data.

Two data mining methods are contained in this model. One is clustering analysis,

and the other one is classification analysis. Then using K-means algorithm for

clustering the different data and decision tree (C4.5 algorithm) as the classifica-

tion model. Finally predicting the traffic volume and occupancy by searching the

decision tree.

Artificial neural network (ANN) is also an excellent algorithm in prediction

model. With its transformation, BPNN adds the training model and can get

the more accurate results. In this Thesis, we choose the BPNN algorithm to

develop our prediction model. Following are some works focus on this algorithm.

Li et al. [25] proposed a basic framework of BPNN applied to traffic prediction

models. For the preparing work, users should initial the connection weights, scale

parameters, and translation parameters and also determine the iterating times

15



and learning factors. Then computing the output results and error signal from

neural network. Finally using the error signal to adjust the weights to let the

output results more close to the expectation outputs period by period. Hu et al.

[26] used BPNN to train the suitable weights to gradually adjust the prediction

model. Then dividing the time into 10 minutes and using four time zones before

to predict the next 10 minutes traffic volume. In Park et al. [27] model, their

method can predict the speed of entire route before journey. First, they divided

the route according to the sensor location. Then if users want to predict the speed

in the future time t + i∆t (t means the time right now) of specific sensor on the

route, they should use the current speed of this sensor, one next sensor, and i

previous sensor to predict the speed at time t + i∆t. Finally using these results

to reversely conjecture the corresponding speed and arrival time of every sensors.

Tong et al. [28] combined the Fuzzy Network (FN) and Neural Network (NN) to a

model Fuzzy Neural Network model (FNNM). They used FN module to do fuzzy

clustering and supervise the learning of NN. Then finally getting the prediction

flow data. In the work of Li et al. [29], they gave a new design of transfer function

in NN. This model has a great reduction of training error and prediction error

and then significantly enhance the convergence speed. Table 2.2 shows the list of

above prediction models.

2.3 Researches on Optimization Methods

Currently, traffic flow is getting more saturated nowadays. The large number

of vehicles in cities is increasingly difficult to load. Traffic congestion is becoming

a serious problem in many countries. Although more and more roads and flyovers

are established, but it’s still not a fundamental method to solve congestion issues.
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Figure 2.4: Traffic light control loop.

A lot of traffic light controllers are proposed now in order to completely alleviate

the traffic congestion. The traditional traffic light control systems mostly use fixed

setting time and lack the ability to variate with real-time traffic situation. So the

studies of dynamic adjustment traffic light setting time are now popular. We can

utilize the traffic data collected from real roads and intersections. Then calculating

or inferring the optimized setting time. Figure 2.4 shows the basic traffic light

control loop. The main purpose is to decrease the delay time of vehicles or queue

length behind red light.

Some related studies have been proposed in this area. Tawara et al. [30] ap-

plied a pheromone model to predict the degree of traffic congestion. They used

the vehicle speed and the type of vehicles to calculate and accumulate the amount

of pheromone in a road section. Then using the result to determine the traffic con-

gestion status and react the setting time to the traffic light. Tan et al. [31] gave
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an traffic light control system based on fuzzy logic technology. Different from the

fixed-time controllers which have fixed extension time, the fuzzy logic controller

uses fuzzy logic, such as small, medium and long. The traffic flow are also con-

verted into fuzzy values as input in the controller. Then deriving the traffic light

setting time through the fuzzy rule base. Srinivasan et al. [32] designed a multia-

gent system with NN algorithm. They used Simultaneous Perturbation Stochastic

Approximation (SPSA) to update the weights of neurons. Then constructing the

agent using SPSA-NN.

In the study [10], we can see that the comparison results between GA and

other methods, the optimization methods in GA is more dominant. In addition,

the signal time of the specific traffic light to be optimized and its neighbors have

a lot of permutation and combination, and GA is also a proper algorithm to

solve these problems which has massive population. So we choose GA for our

optimization method designed in this Thesis.

Following are some works using GA in traffic light optimization systems. Teo

et al. [33] introduced a basic framework of GA applied to the traffic light opti-

mization systems. They gave some suggested parameter setting of GA, and also

proposed a easy formula to simply predict the queue length of all phases in an

intersection. Turky et al. [34] proposed a model using the input variables, which

are the number of vehicles behind red light (vehicle queue), the number of vehicles

passes a green signal and the average arrival rate of vehicles to the red light. Two

genes are contained in a chromosome, one gene is green time, and the other one

is red time. Then using above parameters to design the fitness function of GA.

The output results are the optimized green and red time after calculating with

specific period. Singh et al. [35] used the traffic flow data and different weights

in different roads as input variables. Giving the random extension time to the
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Table 2.3: Researches on traffic light optimization methods.
Year Literature Scheme Considerations
1996 [31] Fuzzy logic traffic flow, vehicle queue

2006 [32]
Neural network (NN) +

Fuzzy logic
occupancy, traffic flow, loading,
average arrival rate, cooperation

2009 [34] Genetic algorithm (GA)
vehicle queue, traffic flow,

average arrival rate
2009 [35] Genetic algorithm (GA) traffic flow, road capacity
2010 [30] Pheromone model vehicle type, speed, time interval
2010 [33] Genetic algorithm (GA) traffic flow, vehicle queue, time interval

fixed minimum green time in each road. Then calculating the Performance Index

(PI) with above parameters. Finally accumulating all the PI of four roads in a

four-way intersection, and finding the minimum result as traffic light setting time.

Table 2.3 gives a summarization of above optimization methods.

2.4 Researches on Traffic Simulators and Traffic

Light Control Systems

Traffic simulation models provide a fast, convenient, cheap and risk-free plat-

form without implementing in the real environment. It can simply and quickly

simulate for different scenarios that is hard accomplished in real world conditions

and also quickly calculate the related data we need.

There are some business software of traffic simulators have been used for a

long time. The most widely used simulators are CORSIM, VISSIM, PARAMICS,

and SIMTRAFFIC. Park et al. [36] and Ratrout et al. [37] introduced the basic

functions of these simulators and compared them in some level. But because of

the custom measure statistics we need in our experiments and the convenience to

insert ourselves algorithms, we still develop a self made simulator which has been
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simply introduced in our published paper [11]. It will give detail introduction in

Chapter 3 and Chapter 5. Table 2.4 shows the reduced table of simulation program

features from report [36]. We also referred to some main features to design our

traffic simulator.

Traffic light control systems are also important in traffic. They are used to set

the green splits, cycle length, offsets, etc. Study [38] and [39] have presented the

introduction and comparison of some popular traffic light control software, such

as TRANSYT-7F, SYNCHRO, and PASSER-II.
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Chapter 3

Preliminaries

In this chapter, we give a simple formulation for the problem addressed by

our proposed system and the definitions of terminologies and parameters. Some

assumptions are also listed for our method. Finally, we will introduce the traffic

simulator used in the Thesis as the experimental platform.

3.1 Terminology

Following are some basic traffic parameters for which we give the introductions

and definitions.

• Traffic Queue Length

It represents the number of vehicles waiting at an intersection signal with

red light.

• Speed

It is the speed of vehicles on a road. It is defined as the average speed of

traffic flow in a specific road section.
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• Arrival rate

It is the average number of vehicles entering a road section per unit of time.

It is often used to estimate the length of the traffic queue at a red light.

• Waiting Time

It is the average waiting time of vehicles at a red light of an intersection.

• Traffic Situation

It is the degree of traffic congestion. It is usually classified into congestion

and non-congestion or peak and off-peak. It can aid in determining the traffic

situation and adopting the appropriate measures to reduce traffic congestion.

Following are the definition of some basic elements of general traffic models.

Figure 3.1 shows a simple diagram of common traffic elements.

• Intersection

An intersection is the junction of two or more roads. It often means the

region of these roads meeting or crossing. Most intersections usually have

the traffic light or roundabout to control the traffic flow along the intersecting

roads. In our system, we define the intersection for two typical types, namely

four-way crossroads and three-way T junctions.

• Traffic signal

Traffic lights are usually set beside the intersections to control the traffic flow.

In our system, there are three states of traffic light, namely red, yellow, and

green.

• Period

It means a complete cycle of traffic light. We define the period as the total
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Figure 3.1: Simple diagram of common traffic elements.

time of red, yellow, and green signals once each. The period can help us

determining the updating time to adjust the traffic light.

• Road Lanes

It is the number of lanes on a road. In this work, we assume all roads only

have one lane in each direction.

• Traffic Data

The data and statistics gathered from sensors or cameras on roads, such

as speed, traffic volumes, waiting time. These data can be used in traffic

prediction and optimization.
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3.2 Problem Formulation

Our target problem is defined as follows. Given the traffic data Tdata and

previous green signal time GTpast, the goal is to predict traffic flow and optimize

traffic signal timing such that the traffic congestion, if any, is reduced.

To solve the problem we construct a system called MPC-based Traffic Light

Control System (MTLCS), where MTLCS = ⟨Pre(Tdata), Opt(Tdata, GTpast)⟩.

• Pre(Tdata) is a prediction model for traffic volumes,

• Opt(Tdata, GTpast) is an optimization method for traffic signal timing,

The goal is to optimize the traffic signal timings such that the traffic congestion,

if any, can be reduced.

We use an in-house traffic simulator to validate our proposed solution.

3.3 Parameter

In this section, we list the variables and parameters used in the traffic flow

prediction model and the traffic light optimization method, which will be described

in Chapter 4. Other algorithm parameters of BPNN and GA will be introduced

in Chapter 4.

3.3.1 Prediction Model

1. Ttrain: Training time threshold, that is, after this threshold is reached the

prediction model must be retrained.

2. Wt: Dynamic weights in BPNN that are adjusted in each training period.

3. Wp: Final weights in the prediction models.
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4. E: Training error between training outputs and desired results.

5. δ: Error signal for adjusting weights.

6. Tdata: Data of traffic volumes used for training BPNN.

7. Pdata: Inputs of traffic volumes for prediction.

8. Pflow: Prediction output of traffic volumes.

3.3.2 Optimization Method

1. Qright, Qleft: Number of vehicles waiting in the parallel direction of the

traffic signal we want to optimize.

2. AV Gup, AV Gdown: Average arrival rate of vehicles in the perpendicular di-

rection of the traffic signal we want to optimize.

3. GTp_x: Green signal time at intersection x in the previous period.

4. TFP : Time for a vehicle passing an intersection.

5. GTGA: The result of GA optimization method in Section 4.2.

6. GTfinal_EW : Final green signal time for the East-West direction

7. GTfinal_NS: Final green signal time for the North-South direction

3.3.3 MPC-based Control Method

1. Topt: Optimization threshold, i.e., the time limit after which optimization is

performed again.

2. F : Number of time intervals to be predicted.
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3. Flowp_x: Predicted traffic volumes in the future x-th time interval.

4. Flowp_AV G: Future average traffic flow.

5. GTset: Final green signal setting time.

3.4 Assumptions

• Traffic data: For our system, some types of traffic data are necessary for

prediction and optimization, including the queue length, arrival rate, and

waiting rate. Existing traffic monitoring systems or simulators must be able

to provide each traffic data before they can use our traffic light control

system.

• Traffic lights: Our method applies to general urban roads with traffic lights.

The proposed method adjusts traffic signal timing so as to resolve conges-

tion problems,thus roads should have traffic lights. Freeway, roundabout, or

country roads without traffic light are out of scope here.

• Intersection : The intersections in most countries are designed into the typ-

ical form, that is four-way crossroads and three-way T junction. In other

words, the traffic lights have two different setting time between two perpen-

dicular directions. So in our method, the intersections that we can handle

are the types mentioned above.

3.5 Traffic Simulator

In order to implement and verify our method, we developed an in-house com-

prehensive traffic simulator. It contains most components of traffic, including traf-
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fic lights, roads, intersections, vehicles, and some useful functions for adjustment

and monitoring. Figure 3.2 shows the graphical user interface of our simulator.

The upper toolbar consists of four main parts, which include all functions of our

simulator. The first part has some execution buttons including start, stop, restart,

and next simulation. The second part is the map and task editors. The third

part is the most important part. It includes three managers and one monitoring

window. The signal manager can adjust green and yellow signal times for each

traffic light in the map. The intersection manager can set optimization threshold

and interval of each intersection. The vehicle manager can set vehicle speed,

congestion level, and scheduling of traffic flow. The simulator can use these settings

with “Poisson distribution” to generate vehicles. The monitoring window can

display the statistics of waiting rate of whole intersections and roads. The details of

these statistics will be introduced later. The fourth part includes some simulation

setting, such as display mode, simulation speed, and graph updating rate. The

left side shows the system status, execution information, and congestion degree of

each intersection. The middle part is the main graphics display of our simulator.

To check the degree of improvement after optimization, we develop some statis-

tics related to vehicles waiting rate. Following are the parameter definitions and

formulas. Table 3.1 and Table 3.2 show the derivation of IAWT and IAWR we

used in our experiments.

• PV : Number of vehicles exiting each road segment.

• EV : Number of vehicles entering each road segment.

• TWT : Total waiting time of all vehicles approaching the intersection.

• WV : Total number of vehicles waiting to cross the intersection.
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Table 3.1: Simulation statistics for an approach.

Single Cycle Data (ith cycle)

Waiting Rate (WRi) WRi =
WVi

EVi

Optimization Window Data

Optimization Window Length in cycles (C) Number of cycles in optimization window

Average Entering Vehicles (AEV ) AEV =

∑C
i=1EVi

C

Average Waiting Time (AWT ) AWT =
C∑
i=1

TWTi

EVi

Average Waiting Rate (AWR) AWR =

∑C
i=1WRi

C

Table 3.2: Simulation statistics for an intersection.

Number of Approaches (A) The number of approaches for an intersection

nth Approach Weight (RWn)

(1 ≤ n ≤ A)
RWn =

AEVn∑A
i=1AEVi

Intersection Average Waiting Time (IAWT ) IAWT =
A∑

n=1

RWn × AWTn

Intersection Average Waiting Rate (IAWR) IAWR =
A∑

n=1

RWn × AWRn
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Chapter 4

MPC-based Traffic Light Control

System

In this chapter, we will give a detailed introduction to our method called

MPC-based Traffic Light Control System (MTLCS). There are two main parts in

MTLCS including a traffic flow prediction model and a traffic light optimization

method. The prediction model is designed based on BPNN, while the optimization

method is designed based on GA. In addition, there is also a MPC-based controller

to handle the communication between these two main functions. Our method uses

future prediction data to help optimize traffic light time settings for the next time

interval. It is built on a in-house simulator and the traffic data for inputs are

also generated from the simulator. Figure 4.1 shows the basic framework of our

method proposed in this Thesis.
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Figure 4.1: MTLCS basic framework.
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Figure 4.2: Diagram of traffic flow statistics.

4.1 Prediction Model Design

Traffic data are required as inputs for both training and prediction, so we need

to calculate the accumulated number of vehicles in a certain road section for a

particular time interval. In Figure 4.2, to estimate the average flow data in the

cross-checked road section, we count the number of vehicles passing the line besides

the upstream intersection, which is then used to predict the future traffic flow for

controlling the signal besides the downstream intersection. Figure 4.3 shows the

framework of BPNN-based traffic flow prediction model.

4.1.1 Training Method for Adjusting Weights in BPNN

In this section, we explain the basic computation procedures of BPNN first.

Figure 4.4 shows the basic structure of BPNN. It has three types of layers, which

are the input layer, hidden layer, and output layer. Each pair of nodes in adjacent

layers is linked by a weight. The values in all nodes in a previous layer and the
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Figure 4.3: BPNN prediction model framework design.
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Algorithm 1: Prediction Model Algorithm.
Input:
Ttrain: Training time threshold;
Tdata: Data of traffic volumes used for training BPNN;
Pdata: Inputs of traffic volumes for prediction;
Ethreshold: Training error threshold;
Output:
Pflow: Prediction output of traffic volumes;
Variable:
W : Weights of BPNN;
E: Training error between training outputs and desired results;
δ: Error signal for adjusting weights;
csat: 1: Training cycle is complete, 0: Training cycle is incomplete;

1 if NeedRetraining(Ttrain) then
// Training model

2 Initialize weight W ;
3 while E > Ethreshold do
4 csat = 0;
5 while csat = 0 do
6 CalculateBPNN(Tdata,W ) ; // Equation 4.1 and

Equation 4.2
7 Calculate error signal δ ; // Equation 4.3 and Equation 4.4
8 Calculate adjustment weight W ; // Equation 4.5
9 if All samples are trained then

10 csat = 1;

11 Calculate training error E ; // Equation 4.6

12 else
// Do prediction

13 Pflow = CalculateBPNN(Pdata,W );
14 return Pflow;

weights are multiplied and accumulated as the input for a node of the next layer.

The inputs are then given to an activation function to calculate the output value

of the node. Repeating the above operations layer by layer from input layer to

output layer, the final output can be derived.

In this Thesis, we use previous traffic flow data to predict future traffic flows via

an BPNN model. To dynamically determine suitable weights for different traffic

scenarios such as peak or off-peak, urban traffic or country traffic, etc, so we apply
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Figure 4.4: The structure of BPNN.

a back propagation method to train and update the weights before prediction. We

set the training time threshold Ttrain to one week, it means we will retrain the

BPNN model every week and also add new traffic flow data into training model

as training samples.

In order to completely illustrate the details of weight training. We give a

simple example to show the steps. In Figure 4.5, the two input values 1 and 1.6

and one output value 0.9 are known previously presenting traffic flow and these

values mean a set of training sample. Initially, all weights are assigned randomly.

Figure 4.6 shows the calculation method of node values in the hidden layer and

the output layer. As shown in Equation4.1, we can calculate the node input value

nodenext by accumulating the products of previous layer node values nodepre_i

and the weights linked to the same node in the hidden layer or the output layer
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Figure 4.5: An example of BPNN with initial inputs/outputs and weights.

weightpre_i→next, I means the number of nodes of previous layer. Upon summation

of product using Equation4.1, the two nodes in the hidden layer have as input

values of 1.72 and 2.24. Then these values are passed to the activation function

in each node, which is the sigmoid function in Equation 4.2 in this BPNN model.

Upon calculation, the output values of the two nodes in the hidden later are 0.848

and 0.904. Similarly, the calculation process is repeated between the hidden layer

and the output layer resulting in the final output of 0.756.

nodenext =
I∑

i=1

(weightpre_i→next × nodepre_i) (4.1)

sigmoid(x) =
1

1 + e−x
(4.2)

The difference between the predicted result (0.756) and the actual result (0.9)

is called the result error. In order to reduce result error, the weights need to be

updated. Figure 4.7 shows the weight updating steps. First, we need to calculate

the error signal δ. There are two types of error signal, namely that for output layer
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Figure 4.6: An example of BPNN with hidden layer and output layer calculations.

using Equation 4.3 and that for a hidden layer using Equation 4.4. The weights

are thus modified by adding the products of errors and outputs to the previous

weights shown as Equation 4.5. Every training samples are trained once each

means a training cycle. After a training cycle, the training error E are calculated

by Equation 4.6 to determine whether the training step is convergence. If it is not

less than the training error threshold Ethreshold, restarting the training cycle. We

set Ethreshold to 0.005 in our method. Table 4.1 shows the updated weights and

outputs.

δoutput = (outputdes − outputcal)× outputcal × (1− outputcal) (4.3)

δhidden =
K∑
k=1

(δnext_k × weightnext_k)× outputcal × (1− outputcal) (4.4)

weightnew = weightold + (δ × outputcal) (4.5)
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Figure 4.7: An example of BPNN with error calculation and weights updating.

E =
1

M

M∑
m=1

(Am − Pm)
2 (4.6)

where

• outputdes: Desired output.

• outputcal: Calculated output of node in hidden layers and output layer.

• δnext_k: Error signal of node k in next layer.

• weightnext_k: Weight linked to node k in next layer.

• K: Number of nodes in next layer.

• weightold: Weight before updating.

• weightnew: Weight after updating.

• Am: Actual traffic volume value of training sample m.

• Pm: Predicted traffic volume value of training sample m.

• M : Number of training samples.
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Table 4.1: Updated weights and outputs of training model.
iteration wa wb wc wd we wf output

1 0.600 0.800 0.700 0.900 0.800 0.500 0.756
2 0.603 0.801 0.704 0.902 0.823 0.524 0.763
3 0.605 0.802 0.709 0.904 0.843 0.546 0.770
4 0.608 0.803 0.712 0.905 0.863 0.567 0.777
5 0.610 0.804 0.716 0.907 0.881 0.586 0.783
6 0.612 0.805 0.720 0.909 0.898 0.604 0.788

...
19 0.633 0.816 0.753 0.925 1.050 0.765 0.830

4.1.2 Traffic Flow Prediction in BPNN

The traffic flow data of traffic volumes is divided into tint minute intervals,

where tint is usually set to 10, 20, etc. We use these time interval values of

traffic data as the node values in BPNN. The number of nodes in the input layer

Numinput is determined by the history data we want to consult for helping us

in predicting the future traffic situation. Thus, the reference data set is for the

following intervals {(tnow − 1× tint), (tnow − 2× tint), ..., (tnow −Numinput × tint)}

and the predicted traffic flow is only one output for (tnow + tint). The number of

nodes in hidden layers Nh is calculated by Equation 4.7.

Nh =
Ns

α× (Ni + no)
(4.7)

• Ni: number of input nodes.

• No: number of output nodes.

• Ns: number of training samples.

• α: scaling factor, which can be elastically adjusted by users, usually 2-10.

The weight adjustment method described in previous section can be applied

to an BPNN constructed using the above parameters so as to dynamically train it
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to model different traffic scenarios (peak traffic, off-peak traffic, etc). The trained

BPNN can then be used as a predictor for traffic flow. Different predictors might

be required for different traffic scenarios. Feeding history traffic data into the

trained prediction models, future traffic flow can thus be predicted.
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4.2 Optimization Method Design

We adapt GA as the method to optimize and adjust the traffic signal timings.

We consider the queue length of roads in the same direction with traffic signal,

the average arrival rate of roads in the vertical direction, and the previous green

time as the factors to design our fitness function. Figure 4.8 shows the framework

of GA-based traffic light optimization method.

4.2.1 Parameter Settings and Operations in GA

Following are the parameters and operations in the GA. The three typical op-

erations used in GA including crossover, mutation and selection are designed and

described here. The parameters and example setting of values in our experiments

are also given.

• Chromosomes

Table 4.2 shows the format of our chromosomes. For calculating the green

signal time of intersection A in Figure 4.9, the adjacent intersections B, C,

D, and E are also considered. The values of the chromosome content are

randomly set from zero to a preset maximum time.

• Population size: 100

• Crossover rate: 0.8

• Number of crossover points: 1

• Mutation rate: 0.1

• Mutation method: Uniform

• Selection method: Roulette wheel

• Replace: 30% for retention, 70% for replacement

• Generation period: 30
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Algorithm 2: Optimization Method Algorithm.
Input:
Qright, Qleft: Number of vehicles waiting in the parallel direction of the
traffic signal we want to optimize;
AV Gup, AV Gdown: Average arrival rate of vehicles in the perpendicular
direction of the traffic signal we want to optimize;
GTp_x: Green signal time at intersection x in the previous traffic signal
period;
TFP : Time for a vehicle to pass an intersection;
GTref : Reference green signal times ; // Equation 4.13
Output:
GTfinal_EW : Final green signal time for the East-West direction;
GTfinal_NS: Final green signal time for the North-South direction;
Variable:
Ngen: Generation of GA;
Chrom: Chromosome of GA;
GTGA: The result of GA optimization;
GTupd: Updated green light time;
GTnor: Normalized green light time;

1 begin
2 Randomly initialize chromosome, Chrom;
3 for i = 1 to Ngen do

// GA calculation steps, Section 4.2.1
4 SelectParent(Chrom);
5 Crossover(Chrom);
6 Mutation(Chrom);
7 CalF itness(Chrom,Qright, Qleft, AV Gup, AV Gdown, GTp_x, TFP );
8 SelectSurvivor(Chrom);
9 AddNewChrom(Chrom);

10 GTGA = SelectBest(Chrom);
11 GTupd = CalUpd(GAGA, GTref ) ; // Equation 4.14
12 GTnor = AdjustSplit(GTupd_EW , GTupd_NS) ; // Equation 4.15 and

Equation 4.16
13 GTfinal = BoundaryCheck(GTnor_EW , GTnor_NS) ; // Equation 4.17

and Equation 4.18
14 return GTfinal_EW and GTfinal_NS;

Table 4.2: Chromosome design.
Contents 0-Max 0-Max 0-Max 0-Max 0-Max

Intersection Intersection A Intersection B Intersection C Intersection D Intersection E
(self) (right 1st) (left 1st) (right 2nd) (left 2nd)
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Figure 4.9: Diagram of intersections relation.

For doing the GA in our proposed method, we have to randomly generate 100

chromosomes at beginning. There are three main operations: selection, crossover,

and mutation. The first step, we select the parents have good fitness values for re-

production. Then using these selected chromosomes to do crossover and mutation.

The crossover method used in our method is 1-point crossover which means two

parents both have a single crossover point and they are swapped by this point for

recombination. The mutation step is used for genetic diversity by replacing one of

the chromosome fragment (gene) in our method. The probability of crossover and

mutation is set to 0.8 and 0.1. Finally, using “Roulette wheel” method to select

the high quality chromosomes which have lower fitness values in our method for

next generation, and replace 70% of population with new random chromosomes.

Fitness function will be introduced in the following section.
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4.2.2 Fitness Function Design in GA

In GA, we need to use traffic related parameters to calculate the fitness values

which can help us to find approximate optimal solutions. The objective function

in our proposed GA method is to minimize the fitness value, which is calculated

as follows.

Fitness = E1 × C1 + E2 × C2 + E3 × C3 + E4 × C4 (4.8)

E1 = |GTn_A −Qright × TFP | − |GTn_A −Qleft × TFP | (4.9)

E2 = (GTn_A × AV Gup) + (GTn_A × AV Gdown) (4.10)

E3 = (|GTn_B−GTn_A|+|GTn_B−GTp_B|)+(|GTn_C−GTn_A|+|GTn_C−GTp_C |)

(4.11)

E4 = (|GTn_D−GTn_A|+|GTn_D−GTp_D|)+(|GTn_E−GTn_A|+|GTn_E−GTp_E|)

(4.12)

where GTn_x is the chosen green signal time at intersection x in the current

period, GTp_x is the green signal time at intersection x in the previous period,

Qright, Qleft are the number of vehicles waiting on the right and left, (the two

approaches in the horizontal direction), respectively, of the intersection x, where

x ∈ {A,B,C,D,E}, TFP is the time for a vehicle to pass an intersection, and

AV Gup, AV Gdown are the average arrival time of vehicles on the two approaches
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(up, down) in the vertical direction.

Figure 4.10 shows the corresponding locations of fitness function. Equation 4.9

tries to find a green split such that the chosen GTn_A minimizes the difference be-

tween meeting the demands of green time by the left approach (Qright × TFP )

and by the right (Qleft × TFP ) approach. Equation 4.10 tries to minimize the

total number of vehicles waiting in the up and down approaches due to red light in

the vertical direction (green light in the horizontal direction). Equation 4.11 tries

to minimize the time difference between adjacent green lights (|GTn_B −GTn_A|+

|GTn_C −GTn_A|) and between consecutive green light changes (|GTn_B −GTp_B|+

|GTn_C −GTp_C |). Equation 4.12 is similar to Equation 4.11, except the coordi-

nation is between signals that are two road segments apart (with one signal in-

between). Since the four components E1, E2, E3, and E4 in the formula for fitness

value have different ranges and different impacts on the optimal green signal value

at intersection A, different normalization ratios (r), weights (w), and coefficients

are assigned to each as shown in Table 4.3. Finally, we calculate the fitness value

by Equation 4.8.
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Table 4.3: Coefficients in fitness calculation.
Ex Cx

x range ratio
(r)

weight
(w)

r × w

(coefficient)
1 0-45 9 4 36
2 0-112 4 3 12
3 0-150 3 2 6
4 0-150 3 1 3

4.2.3 Green Signal Time Calculation

The green signal time is calculated as shown in Figure 4.11, where the steps

are as follows.

1. The optimization result GTGA is a 5-tuple (GTn_A, GTn_B, GTn_C , GTn_D,

GTn_E), where the latter four are called new reference green signal time for

adjacent intersections B, C, D, and E.

2. The reference green signal times (GToldref_x) of neighbor intersections x ∈

{B,C,D,E} are updated by taking the average of the old and new reference

values. Note that the new reference values are from the optimization result

in the previous step.

GTref_x = (GToldref_x +GTnewref_x)÷ 2 (4.13)

3. Update the green signal time for intersection A as follows.

GTupd_A = (GTn_A × 3 +GTref_A × 1)÷ 4 (4.14)

4. Suppose the two updated green signal times for the East-West and North-

South approaches are GTupd_A_EW and GTupd_A_NS, respectively. To calcu-

late the green split for a fixed cycle length, these values are then normalized
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Figure 4.11: Post processing after GA.

with respect to the period length (P ). In other words, the normalized green

times are calculated as follows.

GTnor_A_EW = GTupd_A_EW ÷ (GTupd_A_EW +GTupd_A_NS)× P (4.15)

GTnor_A_NS = GTupd_A_NS ÷ (GTupd_A_EW +GTupd_A_NS)× P (4.16)

5. For traffic safety and smooth optimization, we need to ensure the difference

between two successive time changes is not too large. In this work, the differ-

ence between two successive periods is limited to Ldiff seconds. Further, for

traffic safety and smooth traffic flow, the green signal time is also bounded
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between GTmax and GTmin seconds. The final green signal time given to the

simulator is denoted as GTfinal_A_EW , GTfinal_A_NS.

GTfinal_A =


GTnor_A, if

∣∣GTpre_A−GTnor_A

∣∣ 6 Ldiff

GTpre_A − Ldiff , if
∣∣GTpre_A−GTnor_A

∣∣ > Ldiff , GTpre_A > GTnor_A

GTpre_A + Ldiff , if
∣∣GTpre_A−GTnor_A

∣∣ > Ldiff , GTpre_A < GTnor_A

(4.17)

GTfinal_A =

 GTmax, if GTfinal_A > GTmax

GTmin, if GTfinal_A < GTmin

(4.18)
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4.3 MPC-based Control Method Design

Given the above described prediction and optimization methods, we can dy-

namically adjust the traffic signal timings, instead of traditional fixed time system.

However, we propose to not only just use a single prediction result to control the

traffic signal, but a more time-spanning method based on Model Predictive Control

(MPC). Figure 4.12 shows the proposed MPC-based control method.

Algorithm 3: MPC-based Control Method Algorithm.
Input:
Topt: Optimization threshold time;
Flowhistory: Historical traffic flow data;
F : Number of time intervals to be predicted;
Datatraffic: Traffic data, including queue length and average arrival rate;
Output:
GTset: Final green signal time;
Variable:
Flowp_x: Prediction traffic flow value in the future x-th time interval;
Flowp_AV G: Future average traffic flow;

1 if NeedOpt(Topt) then
2 for f = 1 to F do
3 Flowp_x = PredictionModel(Flowhistory, F lowp_1, ..., F lowp_(x−1));
4 Flowp_AV G = CalAvgPred(Flowp_1, ..., F lowp_f ) ; // Equation 4.19
5 GTset = OptimizationModel(Flowp_AV G, Datatraffic) ; // Section 4.2
6 return GTset;

The total execution time of prediction and optimization is less than 0.5 second

and the yellow signal time we set in our system is 2 seconds, so we can completely

calculate and adjust the optimized signal time for next period just in yellow signal

time interval.

If reaching the optimization threshold time Topt we set to 5 signal periods in

our system, starting the MPC-based control method. Suppose the time interval we

want to optimize is T0 as shown in Figure 4.13. First, we use four historical traffic

volume data in T−4, T−3, T−2, T−1 to forecast one traffic volume result Flowp_0.
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Then, using three history segment data in T−3, T−2, T−1 plus one prediction data

in T0 to forecast the traffic volume Flowp_1, and so on.

After we get all the prediction data (Flowp_0, Flowp_1, Flowp_2, ..., Flowp_F−1)

we need, where F is the number of time intervals with prediction, we can use Equa-

tion 4.19 to calculate the future average traffic flow Flowp_AV G. It is a weighted

combination of several predicted data in future time intervals, instead of just using

a single predicted flow in the next time interval.

Flowp_AV G =

F∑
f=1

(weightf × Flowp_f )

F∑
f=1

f

(4.19)

weightf = F − f + 1 (4.20)

Finally, as shown in Equation 4.21, we input the average prediction flow values

Flowp_AV G and other required traffic data (queue length, past green time) into the

traffic signal optimization method proposed in Section 4.2. The Flowp_AV G is used

as the AV Gup and AV Gdown in Equation 4.10. Then we can get the optimization

output as final setting time GTset.

GTset = OptimizationModel(Flowp_AV G, Datatraffic) (4.21)
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Chapter 5

Experiments

In this chapter, we present the experimental results of the proposed method

MTLCS. We first introduce the experimental setup, including experimental envi-

ronment and testing data sample. Next, we test the related parameter settings

for our method and also give the predicted results and optimization results.

5.1 Experiment Setup

In this section, we explain the experimental environment and testing data

sample used in our experiments.

5.1.1 Experimental Environment

Table 5.1: Experimental environment.
CPU Intel(R) Core(TM) i3-3220 CPU @ 3.30GHz
Memory 4.00GB DDR3 @ 665MHz
Operating system (OS) Windows 7 Ultimate (64-bits)
Development tools Microsoft Visual Studio 2010
Programming language C# 4.0 on .NET Framework 4
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Figure 5.1: Testing map used in our experiment.

The experimental environment is shown in Table 5.1. We use a PC with

an Intel(R) Core(TM) i3-3220 CPU having four cores and the frequency is 3.30

GHz. There are 4.00 GB memory. We use 64-bits Windows 7 as our operating

system. Our programs were written in the programming language using C# 4.0

on Microsoft Visual Studio 2010.

5.1.2 Testing Platform and Data

The testing map used in our experiment is shown as Figure 5.1, including

6 intersections (No.1∼No.6) , 26 roads (No.1∼No.26), and 6 entry points (No.

1∼No.6). Table 5.2 shows the expected values (λ) of the Poisson distribution.

The values mean the expected values of generated vehicles per minute in the entry

points. Figure 5.2 shows the traffic volume sample used in our experiment to

test and verify our proposed method . The characteristic is that it has two peaks

during rush hours similar to the general urban traffic pattern.
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Table 5.2: Vehicle expected values (λ) of Poisson distribution in the entry points.
hhhhhhhhhhhhhhhhhhTime (h)

Entry points Parameter λ in Poisson distribution

1 2 3 4 5 6

00:00 1 1 1 1 1 1

01:00 1 1 1 1 1 1

02:00 1 1 1 1 1 1

03:00 1 1 1 1 1 1

04:00 1 1 1 1 1 1

05:00 1 1 1 1 1 1

06:00 3 3 3 2 2 3

07:00 5 5 5 3 3 5

08:00 7 7 7 3 3 7

09:00 5 5 5 3 3 5

10:00 3 3 3 3 3 3

11:00 3 3 3 3 3 3

12:00 3 3 3 3 3 3

13:00 3 3 3 3 3 3

14:00 3 3 3 3 3 3

15:00 3 3 3 3 3 3

16:00 3 3 3 4 4 3

17:00 3 3 3 6 6 3

18:00 3 3 3 8 8 3

19:00 3 3 3 6 6 3

20:00 3 3 3 3 3 3

21:00 2 2 2 2 2 2

22:00 2 2 2 2 2 2

23:00 1 1 1 1 1 1
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Figure 5.2: Testing traffic flow sample used in our experiment.

5.2 Experimental Results

In this section, we give the experimental results for our proposed method in-

cluding the traffic flow prediction model and traffic light optimization method.

5.2.1 Traffic Flow Prediction Model

Traffic flow prediction model uses past traffic data to predict future traffic

volumes. We test and compare three kinds of different variables for our prediction

model and also present the complete prediction results.

Following are two target values to assess the benefits of the prediction model.

Training error E shown in Equation 5.1 is used to estimate the error for training.

The Mean absolute percentage error (MAPE) shown in Equation 5.2 is used to

estimate the difference between actual values and predictive values for prediction.

We use “10 minutes” traffic volume data as the training and prediction data in

the following experiments.

E =
1

M

M∑
m=1

(Am − Pm)
2 (5.1)
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MAPE =
1

N

N∑
n=1

∣∣∣∣An − Pn

An

∣∣∣∣ (5.2)

where

• Am: Actual traffic volume value of training sample m.

• Pm: Predicted traffic volume value of training sample m.

• M : Number of training samples.

• An: Actual traffic volume value of testing samples n.

• Pn: Predicted traffic volume value of testing samples n.

• N : Number of testing samples.
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Table 5.3: Parameter settings of number of input nodes experiment.
Input layer node 1∼9

Hidden layer node 6
Output layer node 1

Training sample 350
Prediction sample 140

Training cycle 60
Learning rate 0.8

Number of Training Inputs

Number of training inputs means the time slots considered to train the BPNN

model. For example, we use 10 minutes traffic volume data as training data,

so using three training inputs means we consider the previous 30 minutes traffic

volume data to train the model. This experiment is to measure the number of input

nodes in BPNN. Table 5.3 shows the parameter settings for this experiment.

We measure the MAPE while varying the number of inputs from 1 to 9. Ta-

ble 5.4 and Figure 5.3 show the results. We can observe that when the number of

input nodes is less than 3 and when it is more than 5, the prediction results are

quite inaccurate. It means that if we use too few previous traffic volume data, we

cannot get an accurate prediction. On the other hand, if we consider too much

previous traffic volume data, the results may be impacted by the irrelevant infor-

mation from a too long historical time period. When the number of nodes are

3, 4, or 5, the proposed prediction model has a low MAPE and thus give better

prediction results. Thus, the number of nodes is selected as 4 in our method.

60



Table 5.4: MAPE of different number of input nodes in BPNN.
Number of inputs MAPE

1 14.42%
2 13.40%
3 13.05%
4 12.55%
5 12.80%
6 13.36%
7 13.97%
8 14.26%
9 14.92%
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Figure 5.3: Trend chart of MAPE using different number of input nodes.
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Table 5.5: Parameter settings of training sample experiment.
Input layer node 4

Hidden layer node 6
Output layer node 1

Training sample 50∼500
Prediction sample 140

Training cycle 60
Learning rate 0.8

Number of Training Samples

A training sample means a set of historical traffic volume data, including mul-

tiple training inputs and a desired output in continuous time sequence. For exam-

ple, a training sample contains 5 data (Inputa, Inputb, Inputc, Inputd, Outputa)

means it has 4 training inputs and 1 desired output. We measure the prediction

efficacy using 50 to 500 samples. Table 5.5 shows the parameter settings for this

experiment.

Table 5.6 and Figure 5.4 show the training errors and the MAPE results for this

experiment. Observing these two data, too few training samples cause very large

errors. It means the lack of training samples will lead to inaccurate prediction

results. When the number of training samples increases to more than 350, the

training errors approach a stable state. Thus the number of training samples is

enough when the number of samples is greater than 350.
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Table 5.6: Training errors and MAPE of different number of training samples.
Training Sample Training Error MAPE

50 0.052725 46.23%
100 0.021129 40.04%
150 0.010002 25.45%
200 0.007522 21.93%
250 0.005363 17.67%
300 0.005022 14.80%
350 0.005206 12.89%
400 0.004934 12.80%
450 0.004316 12.45%
500 0.004914 12.23%
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Figure 5.4: Trend chart of training errors and MAPE using different number of
training samples.
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Table 5.7: Parameter settings of training cycle experiment.
Input layer node 4

Hidden layer node 6
Output layer node 1

Training sample 350
Prediction sample 140

Training cycle 1∼100000
Learning rate 0.8

Number of Training Cycles

A training cycle of a BPNN is defined as the application of all training samples,

once each, in random order. We calculate the training errors from 1 cycle to

100,000 cycles and observe the convergent condition. It can help us in determining

the suitable number of training cycles setting or estimating the training completion

time. Table 5.7 shows the parameter settings for this experiment.

Figure 5.5 shows the training errors of training cycles from 1 to 20. The training

errors have rapid reduction from 1 to 6 cycles. Then after 6 cycles, the training

errors achieve a steady state. Figure 5.6 shows the training errors of training cycles

from 1000 to 100,000. We can see that the trend in the chart has a slight decline

only and has some fluctuations. Thus, it means the training model has reached a

convergent state. Table 5.8 shows the training errors of different training cycles

from 10 to 100. We set the error threshold to 0.005 in our system and determine

the training cycles more than 60 cycles is enough.
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Table 5.8: Training errors of different number of training cycles from 10 to 100.
Training cycle Training error

10 0.006465
20 0.005946
30 0.005422
40 0.005179
50 0.005022
60 0.004843
70 0.004816
80 0.004594
90 0.004679
100 0.004519
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Figure 5.5: Training errors of training cycles from 1 to 20.
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Figure 5.6: Training errors of training cycles from 1 to 100,000.
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Table 5.9: Parameter settings of final prediction model experiment.
Input layer node 4

Hidden layer node 6
Output layer node 1

Training sample 350
Prediction sample 432 (3 days)

Training cycle 60
Learning rate 0.8

Prediction Results

This experiment shows the complete prediction results. Based on the above

three parameter tests, our prediction model has 4 input nodes, 350 training sam-

ples, and 60 training cycles. We use 3 days traffic volume data to test and verify

our model. Table 5.9 gives the parameter settings for this experiment.

In this experiment, training using above settings was performed to test the

accuracy of the BPNN prediction model. The average MAPE value of experiment

results is 11.59%. For the general standard of MAPE, the value less than 10%

means the high accurate prediction and between 10% to 20% means the excellent

prediction [40]. For the convenience of experiments, we use only one model to

predict the traffic volumes during peak and off-peak time which sometimes is

smooth and sometimes is varied. The average MAPE value are already close

to 10% (high accurate prediction). If one day is divided into several small time

sections with different prediction models which have different trained weights, then

we believe the prediction results can be more accurate. Figure 5.7 shows the 3

days prediction results compared to the actual traffic volume values and we can

see that the trend is very consistent.

66



Figure 5.7: The comparison between actual flow and prediction flow.

5.2.2 Traffic Light Optimization Method

Traffic light optimization method uses the outputs of prediction model and

other necessary traffic data to dynamically adjust the traffic light and improve

traffic congestion.

We test the suitable parameter settings for MPC control method and also

present the final optimization results compared with fixed-time system and real-

time based system (RTBS) in [35] which only consider the queue length of waiting

vehicles. “IAWR” and “waiting time” are used to measure the efficacy of our

proposed method. IAWR was defined in Chapter 3 and waiting time means the

total time of a car waits behind each red signal on the travel route.

MPC parameter experiments

This experiment tests the different number of considered future time slots for

MPC method. Figure 5.8 shows the average IAWR and waiting time from 1 to 5.

We can observe that when we consider more future time slots, IAWR and waiting

time exhibit a greater improvement. However, 5 future time slots give a very
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Figure 5.8: Considered future time slots for MPC method.

marginal improvement over that for 4 future time slots. Thus, we use 4 future

time slots as our setting in MTLCS.
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Figure 5.9: IAWR results compared with other two systems.

IAWR of Optimization Results

We measure the IAWR for our optimization method and other two systems.

Figure 5.9 shows the comparison results of one day. Because of less traffic in the

midnight, we only present the part from 6:00 a.m. to 10:00 p.m. The IAWR of

fixed-time system is higher than RTBS and MTLCS in the whole day. Because

it does not have ability to dynamically adjust the traffic signals according to the

suddenly large and small traffic volumes. Most of the time, the IAWR in our

system MTLCS is almost lower than that in RTBS. And we can see that our

method has greater improvement in the off-peak time.

Table 5.10 and Figure 5.10 show the detailed data of this experiment. We list

the IAWR of 6 intersections separately. Our method has greater improvement

in the more congested intersections such as intersections 4, 5, and 6, for which

reductions are more than 30%. Compared to fixed-time method, our method

MTLCS gives 29.70% reduction in average IAWR, which is greater than that of

RTBS (23.03%).
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Table 5.10: IWAR results and reduced percentages of 6 intersections.
1 2 3 4 5 6 Average

Fixed-time 36.72 30.35 35.98 48.56 46.19 40.75 39.76

RTBS
31.04

(-15.47%)
28.17

(-7.18%)
30.06

(-16.45%)
31.08

(-36.00%)
32.77

(-29.05%)
30.51

(-25.13%)
30.60

(-23.03%)

MTLCS
27.13

(-26.12%)
23.49

(-22.60%)
28.83

(-19.87%)
29.91

(-38.41%)
29.97

(-35.12%)
28.38

(30.36%)
27.95

(-29.70%)
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Figure 5.10: Comparison chart of IAWR results of 6 intersections.
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Figure 5.11: Waiting time results compared with two other systems.

Waiting Time of Optimization Results

We also calculate the average waiting time of all cars going through the map.

Figure 5.11 shows the comparison results. The waiting time of our method MTLCS

and RTBS is less than that in the fixed-time system. But MTLCS is slightly lower

than the RTBS in most of the time.

Table 5.11 and Figure 5.12 show the detailed data of this experiment. We divide

one day into several time sections including two peak sections and two off-peak

sections. We can observe that our method has the greater reduction of waiting

time in peak 2 (17:00∼20:00) with 35.77%. Compared with Figure 5.9, IAWR also

has more improvement in this time section. Finally, the average waiting time is

decreased up to 26.93% in MTLCS and greater than 19.00% in RTBS.
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Table 5.11: Waiting time results and reduced percentages of 4 divided time sec-
tions.

Peak 1
(6:00∼10:00)

Off peak 1
(10:00∼17:00)

Peak 2
(17:00∼20:00)

Off peak 2
(20:00∼22:00)

Average

Fixed-time 22.04 18.05 25.22 17.71 20.27

RTBS
20.68

(-6.17%)
14.94

(-17.23%)
16.61

(-34.14%)
13.50

(-23.77%)
16.42

(-19.00%)

MTLCS
18.04

(-18.15%)
13.12

(-27.31%)
16.20

(-35.77%)
12.69

(-28.35%)
14.81

(-26.93%)
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Figure 5.12: Comparison chart of waiting time of 4 divided time sections.
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Chapter 6

Conclusions and Future Work

In this Thesis, we proposed a MPC-based traffic light optimization system

(MTLCS) to reduce traffic congestion. Our proposed method includes two main

models, which are traffic flow prediction model and traffic light optimization

method.

Traffic flow prediction model is based on BPNN for predicting traffic volume

in the future. Experimental results show that 4 input nodes, 350 training samples,

and 60 training cycles are appropriate settings for the prediction model. Prediction

results from the proposed traffic flow prediction model has an average MAPE

value of 11.59%, which means it is a highly accurate prediction model. Traffic

light optimization method is based on GA for optimizing and adjusting the traffic

signal times. The proposed MPC-based control method gives a lower IAWR and

waiting time compared to the non-MPC systems. The number of future time slots

considered suitable for optimization was found to be four. MTLCS results in a

reduction of 29.70% in average IAWR and a reduction of 26.93% in average waiting

time. Both of these results are better than the other two compared systems.

In the future, for safety considerations, we can consider buffer time when

switching the traffic signals in the vertical direction. In addition, besides ad-
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justing traffic signals, we can also consider travel time predictions, routing plans,

and navigation from drivers point of view to reduce traffic congestion. We can

also consider improving the fuel consumption to reduce environmental impact.
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